Bangunruang sisi lengkung adalah bangun ruang yang memiliki selimut dan memiliki bagian - bagian yang berupa lengkungan. Yang termasuk dalam bangunruang sisi lengkung adalah : 1.Tabug. 2.kerucut. 3.Bola. Simbol - simbol yang harus di ketahui ,antara lain : La = Luas alas. t = Tinggi. r = jari - jari lingkaran. π = terdiri dari 22/7 dan 3,14
Selain bangun ruang sisi datar, dalam pembahasan bangun ruang juga terdapat bangun ruang sisi lengkung. Perbedaan antara bangun ruang sisi datar dan bangun ruang sisi lengkung terletak pada bentuk sisi yang menyusunnya. Pada bangun ruang sisi datar, semua sisinya lurus dan tidak ada yang melengkung. Sedangkan pada bangun ruang sisi lengkung memiliki sisi yang melengkung. Bangun ruang merupakan dimensi tiga. Artinya, benda tersebut mempunyai ruang yang bisa ditempati. Sisi lengkung dicirikan dengan permukaan yang tidak datar. Contoh bangun ruang sisi lengkung adalah tabung, kerucut, dan bola. Baca Juga Bangun Ruang Sisi Datar Dalam bahasan bangun ruang sisi lengkung biasa dipelajari bagaimana cara mencari isi/volume suatu bangun dan luas permukaan dari suatu bangun ruang sisi lengkung. Bagaimana caranya? Simak ulasan lebih lengkapnya pada masing – masing bahasan berikut. Table of Contents Tabung Kerucut Bola Contoh Soal dan Pembahasan Contoh 1 – Soal Bangun Ruang Sisi Lengkung Contoh 2 – Soal Bangun Ruang Sisi Lengkung Contoh 3 – Soal Bangun Ruang Sisi Lengkung Tabung Bangun ruang sisi lengkung pertama yang diulas adalah tabung. Bentuk tabung dengan bagian lengkap meliputi dua buah lingkaran sebagai alas tabung dan tutup tabung. Serta bagian selimut tabung yang menghubungkan bagian alas dan tutup tabung. Berikut ini adalah keterangan bagian-bagian tabung. Karakteristik Tabungi Mempunyai 3 bidang sisi, yaitu bidang alas, bidang tutup, dan sisi Sisi tegak pada tabung merupakan bidang lengkung atau disebut selimut Tabung mempunyai dua Tinggi tabung adalah jarak antara titik pusat lingkaran alas dengan titik pusat lingkaran tutup. Jaring-Jaring TabungSeperti yang telah disebutkan sebelumnya bahwa tabung terdiri atas bagian alas/tutup tabung yang berbentuk lingkaran dan selimut tabung. Gambar jaring-jaring tabung dapat dilihat seperti berikut. Rumus Luas Permukaan dan Volume Tabung Rumus pada tabung yang akan diberikan di bawah merupakan rumus tabung yang dapat digunakan untuk menghitung luas permukaan tabung, luas permukaan tabung tanpa tutup, dan juga rumus volume tabung. Luas alas/tutup tabung = Luas LingkaranLalas = π × r2Ltutup = π × r2 Luas selimut tabung Ls. tabung = 2×π×r×t Luas permukaan tabungLp. tabung = 2 × Lalas + Ls. tabungLp. tabung = 2 × π × r2 + 2 π × r × tLp. tabung = 2×π×rr + t Luas permukaan tabung tanpa tutupLp. tabung = Lalas + Ls. tabungLp. tabung = π×r2 + 2π×r×tLp. tabung = πrr + 2t Volume tabungVtabung = Lalas × tVtabung = π×r2×t Baca Juga Rumus Volume dan Luas Permukaan Balok Kerucut Kedua adalah jenis bangun ruang sisi lengkung berupa kerucut. Kerucut merupakan limas dengan alasnya berbentuk lingkaran. Gambar kerucut dapat dilihat seperti gambar di bawah. Karakteristik Kerucuti Mempunyai 2 bidang sisi, yaitu bidang alas lingkaran dan bidang lengkung selimut kerucut.ii Memiliki 1 satu buah Memiliki 1 satu buah titik sudut. Jaring-Jaring KerucutJaring-jaring kerucut terdiri atas bagian lingkaran dan sebuah lingkaran. Secara lebih jelasnya dapat dilihat pada gambar jaring-jaring kerucut di bawah. Rumus Luas Permukaan dan Volume Kerucut Bahasan rumus pada kerucut yang diberikan adalah rumus untuk mencari garis pelukis, rumus luas permukaan kerucut, dan rumus volume kerucut. Panjang garis pelukis s = √r2 + t2 Luas selimut kerucut Ls. kerucut = π×r×s Luas permukaan kerucutLp. tabung = Lalas + Ls. = π×r2 + π×r2× = π×r×r + s Volume KerucutVkerucut = 1/3 × Lalas × tVkerucut = 1/3 ×π× r2×t Baca Juga Cara Menghitung Volume Gabungan dari 2 atau Lebih Bangun Ruang Bola Selanjutnya adalah bangun ruang sisi lengkung yang ketiga yaitu Bola. Bola digambarkan seperti gambar di bawah. Karakteristik Bola i Bola adalah bangun ruang yang dibatasi oleh sebuah bidang sisi yang berbentuk Bola tidak mempunyai rusuk dan tidak mempunyai titik sudut. Rumus Luas Permukaan dan Volume Bola Rumus pada bola meliputi rumus untuk menghitung luas permukaan bola, luas permukaan setengah bola, luas permukaan setengah bola padat, dan rumus volume bola. Berikut ini adalah kumpulan beberapa rumus pada bola Luas seluruh permukaan bolaL p. bola = 4×π×r2 Luas permukaan setengah bolaLp. ½bola = 2 ×π×r2 Luas permukaan setengah bola padatLp. bola padat = 3×π×r2 Volume bola Vbola = 4/3 ×π×r3 Baca Juga Cara Menghitung Volume dan Luas Permukaan 1/2 Bola Padat Contoh Soal dan Pembahasan Beberapa contoh soal di bawah dapat sobat idschool gunakan untuk menambah pemahaman bahasan di atas. Setiap contoh soal yang diberikan dilengkapi dengan pembahasannya. Sobat idschool dapat menggunakan pembahasan tersebut sebagai tolak ukur keberhasilan mengerjakan soal. Selamat Berlatih! Contoh 1 – Soal Bangun Ruang Sisi Lengkung Sebuah kerucut mempunyai jari-jari alas dengan panjang 5 cm dan panjang garis pelukis 13 cm. Tinggi kerucut tersebut adalah .…A. 7 cmB. 8 cmC. 10 cmD. 12 cm Pembahasan Berdasarkan soal dapat diketahui bahwa Jari-jari kerucut = r = 5 cmGaris pelukis kerucut = s = 13 cm Perhatikan ΔTOP dalam kerucut seperti gambar di bawah. Untuk mencari tinggi kerucut dapat menggunakan teorema phytagoras seperti yang ditunjukkan pada cara berikut. t2 = s2 − r2t2 =132 − 52t2 = 169 − 25t2 = 144 → t = √144 = 12 cm Jadi, tinggi kerucut tersebut adalah 12 D Baca Juga Kesebangunan dan Kekongruenan Contoh 2 – Soal Bangun Ruang Sisi Lengkung Perhatikan gambar di bawah! Jika luas permukaan bola 90 cm2, maka luas seluruh permukaan tabung adalah ….A. 160 cm2B. 150 cm2C. 135 cm2D. 120 cm2 Pembahasan Persamaan pada BolaLp. bola = 4×π×r290 = 4×π×r22×π×r2 = 90/2 = 45 cm2 Persamaan pada TabungJari-jari tabung = jari-jari bola = rTinggi tabung = 2 x jari-jari bola = 2r Sehingga,Lp. tabung = 2×π×r2 + 2×π×r×tLp. tabung = 2×π×r2 + 2×π×r×2rLp. tabung = 2×π×r2 + 2×2×π×r2Lp. tabung = 3×45 = 135 cm2 Proses perhitungan sudah selesai, namun di sini, idschool akan menambahkan cara cepat untuk menyelesaikan contoh soal seperti di atas. Simak langkah – langkahnya seperti berikut ini. CARA CEPAT!!! Jika bola di dalam tabung menyinggung alas dan tutup tabung maka rbola = rtabung. Luas permukaan tabung dapat dihitung seperti cara di bawah. Ltabung = 3/2 × LbolaLtabung = 3/2 × 90 = 135 cm2 Jadi, luas seluruh permukaan tabung adalah 135 cm2. Jawaban C Contoh 3 – Soal Bangun Ruang Sisi Lengkung Sebuah kerucut mempunyai volume 27 cm3. Jika diameter kerucut diperbesar 3 kali dan tingginya diperbesar 2 kali, maka volume kerucut tersebut adalah .…A. 972 cm3B. 486 cm3C. 324 cm3D. 162 cm3 Pembahasan Misalkan jari-jari kerucut pertama adalah r1 dan tinggi kerucut pertama adalah r1 maka memenuhi persamaan di = 271/3 ×π×r12×t1 = 27 Berdasarkan keterangan pada soal diameter kerucut diperbesar 3 kali, sehingga dapat dibentuk persamaan = 3 × d12r2 = 3 × 2r1r2 = 32r1 Berdasarkan pada soal tingginya diperbesar 2 kali t2 = 21 Sehingga, volume kerucut dengan diameter kerucut diperbesar 3 kali dan tingginya diperbesar 2 kali dapat dihitung seperti cara berikut. V2 = 1/3×π×r22×t2V2 = 1/3×π×3r12×2t1V2 = 1/3×π×9r12×2tV2 = 18×1/3×π×r12×t1V2 = 18×27 = 486 cm3 Jawaban B Demikianlah ulasan terkait materi bangun ruang sisi lengkung yang meliputi tabung, kerucut, dan bola. Terimakasih sudah mengunjungi idschooldotnet, semoga bermanfaat. Baca Juga Rumus Kesebangunan Trapesium
Gambarlahjaring-jaring bangun ruang sisi lengkung berikut dengan tepat.a. Kerucut dengan panjang jari-jari alas 9 cm dan tinggi kerucut 12 cm.b. Tabung dengan panjang diameter 21 cm dan tinggi 18 cm . Kerucut Tabung BANGUN RUANG SISI LENGKUNG GEOMETRI Matematika Rekomendasi video solusi lainnya 01:11 Perhatikan gambar kerucut!Garis AC adalah
Jaring-jaring, Luas Permukaan dan Volume Bangun Ruang Sisi LengkungBangun Ruang Sisi Lengkung ⚡️Tentang video dalam subtopik iniJaring-Jaring dan Luas Permukaan TabungVideo ini membahas jaring-jaring dan luas permukaan tabungKonsep terkaitLuas Selimut Tabung, Luas Permukaan Sisi Tabung, Menentukan Panjang Selimut Tabung JANGAN DIGUNAKAN, Luas Alas Tabung, Jaring-Jaring Tabung, Volume TabungVideo ini membahas tentang volume tabungKonsep terkaitVolume Tabung, Jaring-Jaring dan Luas Permukaan KerucutVideo ini membahas tentang jaring-jaring dan luas permukaan kerucutKonsep terkaitJaring-Jaring Kerucut, Luas Permukaan Sisi Kerucut, Luas Alas Kerucut, Luas Selimut Kerucut, Hubungan Antara Garis Pelukis, Jari-jari, dan Tinggi Kerucut, Volume KerucutVideo ini membahas tentang volume kerucutKonsep terkaitVolume Kerucut, Volume BolaVideo ini membahas tentang volume bolaKonsep terkaitVolume Bola,
ContohSoal Pemantapan Ujian Sekolah dan Pembahasan SMP Kelas 9 Bangun Ruang SIsi Lengkung (Tabung) Volume bola sama dengan empat kali volume kerucut dengan jari-jari sama dengan jari-jari bola dan tinggi sama dengan jari-jari bola, dengan demikian V. Bola = 4 × V. Kerucut V. Bola = 4 × 1 3 π r 2 t
JaringJaring Limas Jaring-jaring limas diperoleh dari model prisma yang diiris pada beberapa rusuknya, kemudian direbahkan di atas bidang datar. 5. Unsur-unsur pada Bangun Ruang Sisi Lengkung Bangun ruang sisi lengkung mempunyai sisi berupa bidang lengkung. Jenis-jenis bangun ruang sisi lengkung antara lain sebagai berikut. 3 / 6
2Bangun ruang sisi lengkung Jaring−jaring kerucut T Apabila kerucut dipotong menurut garis lengkung dan garis pelukisnya maka akan diperoleh jaring−jaring kerucut seperti gambar di atas. T s s t s r A 2 r r B Jaring−jaring kerucut terdiri dari sebuah lingkaran yang merupakan alas kerucut dan sebuah juring lingkaran yang merupakan selimut
Gambarlahjaring-jaring bangun ruang sisi lengkung Pertanyaan Gambarlah jaring-jaring bangun ruang sisi lengkung berikut dengan tepat. b. Tabung dengan panjang diameter dan tinggi . IS I. Sutiawan Master Teacher Mahasiswa/Alumni Universitas Pasundan Jawaban terverifikasi Pembahasan Jawaban yang benar untuk pertanyaan tersebut adalah: Ingat!
Jaringjaring kerucut adalah gabungan beberapa bangun datar yang jika dirangkai akan membentuk bangun ruang sisi lengkung kerucut. Berikut jaring-jaring kerucut yang terbentuk jika suatu kerucut dibongkar. Bola. Bola adalah suatu bangun ruang sisi lengkung yang hanya dibatasi oleh satu sisi lengkung. Jaring-jaring bola dapat digambarkan seperti punggung buah jeruk.
Andadapat membuat model-model bangun-bangun ruang dari jaring-jaring tersebut yaitu dengan melipat dan melekatkan tepi-tepi yang sesuai, untuk melekatkan digunakan tambahan (lidah), disisi diberi arsiran. 3. jaring-jaring Kubus kubus merupakan bangun ruang istimewa karena dibentuk oleh enam sisi bangun
KuisJaring-jaring, Luas Permukaan dan Volume Bangun Ruang Sisi Lengkung dari Bangun Ruang Sisi Lengkung ⚡️.
dUiO8. 04g8vlists.pages.dev/24904g8vlists.pages.dev/4404g8vlists.pages.dev/60804g8vlists.pages.dev/36004g8vlists.pages.dev/20004g8vlists.pages.dev/40704g8vlists.pages.dev/9804g8vlists.pages.dev/505
jaring jaring bangun ruang sisi lengkung